

• Reminder:

Bremen

U

• In a triangle, A_i/C_i , B_i/C_i , A_{i-1}/C_i are the barycentric coordinates; i.e.:

$$\frac{A_i}{C_i}(P_{i-1} - X) + \frac{B_i}{C_i}(P_i - X) + \frac{A_{i-1}}{C_i}(P_{i+1} - X) = 0$$

$$P_{i+1}$$

$$P_{i+1}$$

$$P_{i}$$

$$P_{i-1}$$

$$P_{i-1}$$
Therefore:
$$A_i(P_{i-1} - X) + B_i(P_i - X) + A_{i-1}(P_{i+1} - X) = 0$$
Homogenous barycentric coordinates

- Consider the series of triangles $\Delta P_{i-1} P_i P_{i+1}$
- Approach: compute the weighted average of the (homogeneous) barycentric coordinates w.r.t. each of these triangles:

$$w_i := w_i(X) = \sigma_{i-1}A_{i-2} + \sigma_iB_i + \sigma_{i+1}A_{i+1}$$

where $\sigma_i := \sigma(X)$ can be any function (for the time being)

 Every vertex is involved in
 4 or 5 barycentric coordinates, respectively

Proposition 1:

These

$$w_i = \sigma_{i-1}A_{i-2} + \sigma_iB_i + \sigma_{i+1}A_{i+1}$$

fulfill condition 1 from the definition of barycentric coordinates.

Proof:

$$\sum_{i=1}^{n} w_i(P_i - X) = \sum_{i=1}^{n} \sigma_i (A_i(P_{i-1} - X) + B_i(P_i - X) + A_{i-1}(P_{i+1} - X)) = 0$$

Proposition 2:

If the polygon is convex and $\forall i : \sigma_i(X) > 0$ then $\sum w_i(X) > 0$

for all values of X in the interior of the polygon.

Proof:

$$\sum_{i=1}^{n} w_i(X) = \sum_{i=1}^{n} \sigma_i(X) \cdot C_i > 0 \quad , \quad da \quad \forall i : C_i > 0$$

Insert definition of the w_i, change summation indicies appropriately, remember indices are mod n

- Note: $\sigma_i > 0$ alone does not guarantee that $\sum w_i(X) > 0$!
 - The convexity of the polygon is crucial...

- Note: with $\sum w_i > 0$, the normalization of the w_i 's to get the λ_i 's always works
- Reminder: $w_i > 0$ is a requirement from condition 2 of the definition
- Goal: look for appropriate σ_i , such that $w_i > 0$ and $\sigma_i > 0$

 P_{j+1}

 \overline{P}_{j-1}

 P_i

Some Candidates

Bremen

- Naive approach: choose $\sigma_i = \frac{1}{C_i}$
 - Thus $\sum w_i(X) \equiv n$
 - Unfortunately, $w_i(X) > 0$ is not guaranteed
 - Result: the interpolation property doesn't hold ☺

Wachspress coordinates: choose σ_i (X) = 1/(A_{i-1}A_i)
 Thus

$$w_i := \frac{\mathcal{F}(\Delta P_{i-1}P_iP_{i+1})}{\mathcal{F}(\Delta XP_{i-1}P_i)\cdot\mathcal{F}(\Delta XP_iP_{i+1})}$$

• Disadvantage: they behave badly in a non-convex polygon, since $\sum w_i(X) = 0$ is possible, which means that the λ_i 's have a pole there

- Bremen
- Explanation why w_i < 0 is possible with the naïve choice

The Best Candidate (up until this point)

- Mean value coordinates (MVCs):
 - Choose

Thus

Bremen

W

$$w_i(X) = rac{r_{i-1}A_i + r_iB_i + r_{i+1}A_{i-1}}{A_{i-1}A_i}$$

With some trigonometric substitutions:

 $\sigma_i = \frac{r_i}{A_{i-1}A_i}$

$$w_i = \frac{\tan\left(\alpha_{i-1}/2\right) + \tan\left(\alpha_i/2\right)}{r_i/2}$$

- Proposition: the MVCs are barycentric coordinates for all X in the interior of the polygon
- Obvious, because:

if X is in the interior
$$\rightarrow$$
 all $\sigma_i > 0$ and all $w_i > 0$

 P_{i+1}

• A demonstration that the equation for *w_i* is correct:

$$w_{i} = \sigma_{i-1}A_{i-2} + \sigma_{i}B_{i} + \sigma_{i+1}A_{i+1}$$

$$= \frac{r_{i-1}}{A_{i-2}A_{i-1}}A_{i-2} + \frac{r_{i}}{A_{i-1}A_{i}}B_{i} + \frac{r_{i+1}}{A_{i}A_{i+1}}A_{i+1}$$

$$= \frac{r_{i-1}}{A_{i-1}} + \frac{r_{i}}{A_{i-1}A_{i}}B_{i} + \frac{r_{i+1}}{A_{i}} = \cdots$$

Then: for A_i and B_i, use the sin-formula for the surface area and use trigonometric identities

Lemma (w/o proof): Let \mathcal{P} be a given convex polygon. Label the MVCs of a point X w.r.t. \mathcal{P} with w_i , i=1...n.

Now refine \mathcal{P} with the insertion of a point. Denote this refined polygon by $\hat{\mathcal{P}}$. Label the MVCs of X w.r.t. $\hat{\mathcal{P}}$ with \hat{w}_i , i=1...n+1.

Then

Bremen

W

$$\sum_{i=1}^{n+1} \hat{w_i} = \sum_{i=1}^n w_i$$

Consequence: the $\lambda's$ are also well-defined for $\hat{\mathcal{P}}$

Bremen

llŰ

Let \mathcal{P} be any simple polygon.

For all X not located on the edge of the polygon \mathcal{P} :

$$\sum w_{i}\left(X
ight)
eq0$$

Proof:

- Assumption: X is in the interior of \mathcal{P}
- Draw rays from X through the corners
 of P → refinement of P
- Name the refinement \mathcal{P} again and its corners $P_1,...,P_n$.

- Classify edges into "entry edge" (red) or "exit edge" (green)
 - Can be done easily either by checking the orientation of the edge w.r.t. *X*, or by following a ray from *X* outward
- Observation:
 For every entry-edge there is an exit-edge closer to X
- For every edge P_iP_{i+1}, define the following value

$$k_i = \left(rac{1}{r_i} + rac{1}{r_{i+1}}
ight) an rac{lpha_i}{2}$$

where the *signs* of the angles α_i are determined by the orientation of the respective edges

• One sees immediately that:
$$\sum k_i = \frac{1}{2} \sum w_i$$

(The summands are combined only a little differently, and the coefficient $\frac{1}{2}$ is with the r_i)

• Thus, for an edge P_iP_{i+1} :

Bremen

f exit-edge
$$\rightarrow k_i > 0$$

if entry-edge $\rightarrow k_i < 0$

- Let P_iP_{i+1} be an entry-edge
- Then a corresponding exit-edge $P_i P_{i+1}$ must also exist, and it is closer to X
- The following holds for their angles: $\alpha_i = -\alpha_j$
- The following applies for their distances:

$$r_j \leq r_{i+1} \wedge r_{j+1} < r_i$$
 oder $r_j < r_{i+1} \wedge r_{j+1} \leq r_i$

• With that, we have

$$k_j = \left(\frac{1}{r_j} + \frac{1}{r_{j+1}}\right) \tan \frac{\alpha_j}{2} \quad > \quad \left(\frac{1}{r_i} + \frac{1}{r_{i+1}}\right) \tan \frac{-\alpha_i}{2} = -k_i$$

- In other words: for every k_i of an entry-edge, there is a k_j of an exit-edge so that k_i + k_j > 0
- Thus $\sum k_i > 0$ and with that $\sum w_i > 0$

for all X in the interior of \mathcal{P}

- Furthermore, we can show that for non-convex polygons the mean value coordinates have the following properties:
 - λ_i are well-defined for *X* on the edge of the polygon
 - $\lambda_i(P_j) = \delta_{ij}$
 - $\lambda_i \in \mathcal{C}^{\infty}$ with the exception of those at P_j; there they are only \mathcal{C}^0

Implementation

• Practical calculation of
$$\tan\left(\frac{\alpha_i}{2}\right)$$
:
 $\tan\frac{\alpha_i}{2} = \frac{\sin\alpha_i}{1+\cos\alpha_i}$
 $\cos\alpha_i = \frac{\mathbf{p}_i \cdot \mathbf{p}_{i+1}}{|\mathbf{p}_i| \cdot |\mathbf{p}_{i+1}|}$ $\sin\alpha_i = \frac{|\mathbf{p}_i \times \mathbf{p}_{i+1}|}{|\mathbf{p}_i| \cdot |\mathbf{p}_{i+1}|}$ $\mathbf{x} \leftarrow \mathbf{p}_i$

Thus:
$$\tan \frac{\alpha_i}{2} = \frac{|\mathbf{p}_i \times \mathbf{p}_{i+1}|}{|\mathbf{p}_i| \cdot |\mathbf{p}_{i+1}| + \mathbf{p}_i \cdot \mathbf{p}_{i+1}|}$$

- If $|\mathbf{p}_i \times \mathbf{p}_{i+1}| = 0$, then X is located on an edge \rightarrow special treatment:
 - 1. $X = P_i$ or $X = P_{i+1}$
 - 2. Otherwise: use linear interpolation between P_i und P_{i+1}

Application: Interpolation of Colors

Given:

Bremen

W

- A simple polygon (not necessarily convex)
- A color at every corner
- Task: color the interior of the polygon with "pretty" color gradients (a common task in drawing software, for example)
- Solution:
 - Calculate barycentric coordintates for every pixel in the interior of the given polygon
 - Interpolate the colors of the vertices using these barycentric coords

Mean Value Coordinates

Application: Image Warping

- Task: warp the given image by displacing a few "control polygon"
- Examples:

Algorithm

Bremen

W

First idea: "forward mapping"

for u = 0 ... umax: for v = 0 ... vmax x, y = f(u,v) $dst(x,y) \leftarrow src(u,v)$

- Construction of f:
 - Determine barycentric coordinates of a point X w.r.t. the control polygon in the source image
 - Interpolate the *positions* of the vertices of the control polygon in the destination image $\rightarrow X'$
- Problems:

Bremen

Better idea: "reverse mapping"

for x = 0 ... xmax: for y = 0 ... ymax u, $v = f^{-1}(x, y)$ dst(x,y) \leftarrow src(u,v)

- Use barycentric interpolation again to construct f⁻¹
 - Just swap the roles
- Small problem:
 - (u,v) are not pixel coords.; rather they are located "between" pixels
 - One has to do "resampling" or interpolation in the source image

Bremen

W

- Simplest solution: rounding
 - Produces big artifacts ("aliasing"; more on this later)
- The second-simplest solution: bi-linear interpolation

Additional examples:

Bremen

Ű

Today fully-integrated in software:

July 2013

Application: Morphing

- Given: two triangle meshes *M*₁ und *M*₂ with...
 - Exactly the same number of vertices und triangles; and
 - A correspondence $oldsymbol{\phi}$: $V_1 o V_2$ so that
 - P, Q, R ist ein Dreieck in $M_1 \Leftrightarrow$

 $\Phi(P), \Phi(Q), \Phi(R)$ ist ein Dreieck in M_2

- Task: a uniform "deformation" of mesh M₁ in M₂
 - Because of the correspondence, it is sufficient to manipulate the coordinates of the vertices from V₁ uniformly (for example, across 1000 time steps), so that in the end V₂ is generated
- Terminology: M₁ and M₂ are also called "morph targets," or "source" and "target"

- Given *t*, the "morph parameter"
- Naive solution: linear interpolation

$$P(t) = (1-t)P + t\Phi(P)$$

• Example:

Assumption: both meshs M₁ and M₂ are flat in the plane

Enclose both morph targets in a common, fixed polyline:

Terms:

Bremen

ແມ່ງ

- Inner vertices $V_{I} = \{P_{i} \mid i = 1...n\}$
- Bounary points $V_B = \{P_i \mid i = n + 1 \dots n + k\}$
- N = n + k
- E = set of edges
- Using generalized barycentric coordinates, set up an LES for all vertices (for both M_1 and M_2):
 - For every $P_i \in V_I$, $i = 1 \dots n$ define $\rangle > 0 \forall (i, i) \subset E$ $\chi_{IJ} = 0 \vee (I, J) \not\simeq \mathbf{L}$

and set
$$\lambda_{ij} > 0 \ \forall (i,j) \in E$$

 $\lambda_{ii} = 0 \ \forall (i,j) \notin E$

• Therefore:

$$P_i = \sum_{j=1}^N \lambda_{ij} P_j , \quad i = 1 \dots n$$

Written slightly differently:

$$P_i - \sum_{j=1}^n \lambda_{ij} P_j = \sum_{j=n+1}^{n+k} \lambda_{ij} P_j$$
, $i = 1 \dots n$

•
$$P_i = (x_i, y_i, z_i)$$
 yields the 3 LES's:

- The (simple) idea:
 - **1.** Interpolate the λ 's:

$$\lambda_{ij}^{(t)}=(1-t)\lambda_{ij}^{(1)}+t\lambda_{ij}^{(2)}$$

- **2**. Solve the 3 LES's for every $t \rightarrow$ yields P_i , $i = 1 \dots n$
- A less simple idea ("intrinsic morphing"):
 - 1. Interpolate the α 's and *r*'s (= angle & distances in the mesh):

$$\alpha_{ij}^{(t)} = (1-t)\alpha_{ij}^{(1)} + t\alpha_{ij}^{(2)} \qquad r_{ij}^{(t)} = (1-t)r_{ij}^{(1)} + tr_{ij}^{(2)}$$

- **2**. From that, calculate $\lambda(t)$'s
- 3. Solve the 3 LES's
- Exercise: how many variables are interpolated in the three variants (for a specific t)?

- Note:
 - The matrix *A* is not necessarily symmetrical
 - It is sparsely populated
 - It is, to a large degree, diagonally dominated, but it is not a band matrix
- Use an iterative solver
 - Initialize it with the solution of step t-1

Bremen

W

Linear interpolation of vertices:

Linear interpolation of barycentric coordinates:

Intrinsic interpolation:

Additional example:

Going Further

Bremen

llŰ

- Simultaneous morphing of multiple targets
- Given n morph targets M_i
- Task: determine an "in-between"

$$M' = \sum \alpha_k M_k$$

Idea:

- 1. Determine the barycentric coordinates $\lambda_{ij}^{(k)}$ of all M_k with regard to a fixed control polygon (or control polyhedron in 3D)
- **2.** Interpolate the λ 's:

$$\lambda_{ij}' = \sum \alpha_k \lambda_{ij}^{(k)}$$

3. Solve the LES's

Application: Cage-Based Shape Deformation

- Given: a mesh
- Task: targeted deformation of individual parts of the surface
- Example:

- The "cages" (a.k.a. "control mesh") determines the deformation (and is set, for example, by the animator)
- Solution: ...

- Take a look at papers on the class's homepage!
 - Under "Online-Literatur"

