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§  Reminder:  

§  In a triangle,  Ai /Ci, Bi /Ci , Ai-1/Ci  are the barycentric coordinates; i.e.: 

§  Therefore: 

Ai 

Ai-1 
Pi+1 

Pi 

Pi-1 

X 

Bi 

Homogenous barycentric coordinates 

Ai

Ci
(Pi�1 � X ) +

Bi

Ci
(Pi � X ) +

Ai�1

Ci
(Pi+1 � X ) = 0

Ai (Pi�1 � X ) + Bi (Pi � X ) + Ai�1(Pi+1 � X ) = 0
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§  Consider the series of triangles 

§  Approach: compute the weighted average of the (homogeneous) 
barycentric coordinates w.r.t. each of these triangles: 
 
 
  where                       can be any function (for the time being) 

§  Every vertex is involved in 
4 or 5 barycentric coordinates,  
respectively 

Ai-2 

Pi 

X 

Bi 

Ai+1 

� Pi�1 Pi Pi+1

wi := wi (X ) = �i�1Ai�2 + �iBi + �i+1Ai+1

�i := �(X )
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§  Proposition 1: 
These 
 
fulfill condition 1 from the definition of 
barycentric coordinates. 

§  Proof: 

Ai-2 

Pi 

X 

Bi 

Ai+1 wi = �i�1Ai�2 + �iBi + �i+1Ai+1

nX

i=1

wi(Pi �X ) =
nX

i=1

�i

�
Ai(Pi�1 �X ) +Bi(Pi �X ) +Ai�1(Pi+1 �X )

�
= 0



G. Zachmann 14 Generalized Barycentric Coordinates Advanced Computer Graphics 4 July 2013 SS 

§  Proposition 2: 

If the polygon is convex and 

then 

for all values of X in the interior of the polygon. 

§  Proof: 

 

§  Note:               alone does not guarantee that                           ! 

§  The convexity of the polygon is crucial... 

�i : �i (X ) > 0

n�

i=1

wi (X ) =
n�

i=1

�i (X )·Ci > 0 , da �i : Ci > 0

P
wi(X ) > 0

�i > 0

Insert definition of the wi, change summation indicies appropriately, remember indices are mod n 

Ai-2 

Pi 

X 

Bi 

Ai+1 

P
wi(X ) > 0
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§  Note: with                  , the normalization of the wi's to get the      's 
always works 

§  Reminder: wi > 0  is a requirement from condition 2 of the definition 

§  Goal:  look for appropriate      , such that  wi > 0 and 

�i

�i �i > 0

P
wi > 0
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Some Candidates 

§  Naive approach: choose 
§  Thus 

§  Unfortunately,                        is not guaranteed 

§  Result: the interpolation property doesn't hold L 

§  Wachspress coordinates: choose 
§  Thus 

§  Disadvantage: they behave badly in a non-convex 
polygon, since                           is possible, which means 
that the      's have a pole there 

Ci 

X 

Pi+1 

Pi 

Pi-1 

�i (X ) =
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Ai�1Ai
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F

�
�Pi�1PiPi+1

⇥

F
�
�XPi�1Pi

⇥
·F

�
�XPiPi+1

⇥

�i

P
wi(X ) ⌘ n

wi(X ) > 0

P
wi(X ) = 0

�i = 1
Ci



G. Zachmann 17 Generalized Barycentric Coordinates Advanced Computer Graphics 4 July 2013 SS 

§  Explanation why wi < 0 is 
possible with the naïve 
choice 
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The Best Candidate (up until this point) 

§  Mean value coordinates (MVCs): 
§  Choose 

§  Thus 

§  With some trigonometric substitutions: 

§  Proposition: the MVCs are barycentric coordinates for 
all X in the interior of the polygon 

§  Obvious, because:  
         if X is in the interior →  all               and all wi > 0  

Ai 

Ai-1 

Pi+1 

Pi 

Pi-1 

X 

ri 

Pi+1 

Pi 

Pi-1 

X 

ri 
αi 

αi-1 

�i =
ri

Ai�1Ai

wi (X ) =
ri�1Ai + riBi + ri+1Ai�1

Ai�1Ai

wi =
tan (�i�1/2) + tan (�i/2)

ri/2

�i > 0
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§  A demonstration that the equation for wi is correct: 

§  Then: for Ai and Bi, use the sin-formula for the surface area and 
use trigonometric identities 

wi = �i�1Ai�2 + �iBi + �i+1Ai+1

= ri�1

Ai�2Ai�1
Ai�2 + ri

Ai�1Ai
Bi + ri+1

AiAi+1
Ai+1

= ri�1

Ai�1
+ ri

Ai�1Ai
Bi + ri+1

Ai
= · · ·
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Extension to Non-Convex Polygons 

§  Lemma (w/o proof): 
Let       be a given convex polygon. 
Label the MVCs of a point X 
w.r.t.      with wi , i=1…n. 
Now refine      with the insertion of a point. 
Denote this refined polygon by     . 
Label the MVCs of X  
w.r.t.      with       , i=1…n+1. 

Then 

 

§  Consequence: the        are also well-defined 
for  

P

P
P

P
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ŵi
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§  Theorem:  
Let       be any simple polygon. 
For all X not located on the edge of the polygon     :  
 

§  Proof: 

§  Assumption: X is in the interior of 

§  Draw rays from X through the corners 
of       →  refinement of 

§  Name the refinement      again 
and its corners P1,…,Pn. 

X 

Pi+1 Pj 

Pj+1 

Pi 

�
wi (X ) �= 0

P
P

P

P P
P

P
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§  Classify edges into  
"entry edge" (red) or "exit edge" (green) 

-  Can be done easily either by checking  
the orientation of the edge w.r.t. X, or 
by following a ray from X outward 
 

§ Observation: 
For every entry-edge there is an 
exit-edge closer to X 
 

§  For every edge PiPi+1, define the following value 

 
 
where the signs of the angles αi are determined by the orientation of the 
respective edges 

X 

Pi+1 Pj 

Pj+1 

Pi 

P

ki =
⇣ 1
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+

1
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⌘
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§ One sees immediately that: 
 

(The summands are combined only a little differently, and the coefficient ½  is with the ri ) 

§  Thus, for an edge PiPi+1: 

   if exit-edge    → ki > 0 

   if entry-edge → ki < 0 

§  Let PiPi+1 be an entry-edge 

§  Then a corresponding exit-edge PjPj+1 must also exist, and it is closer to X 

§  The following holds for their angles: 

§  The following applies for their distances: 

 

�
ki =

1

2

�
wi

�i = ��j

rj  ri+1 ^ rj+1 < ri oder rj < ri+1 ^ rj+1  ri
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§ With that, we have 

§  In other words: for every ki of an entry-edge, there is a kj of an exit-edge 

so that ki + kj > 0 

§  Thus 
 

and with that 
 

for all X in the interior of 

kj =
� 1

rj
+

1

rj+1

⇥
tan

�j

2
>

� 1

ri
+

1

ri+1

⇥
tan

��i

2
= �ki

�
ki > 0

�
wi > 0

P
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§  Furthermore, we can show that for non-convex polygons the 
mean value coordinates have the following properties: 

§         are well-defined for X on the edge of the polygon  

§                                                                                               

§                      with the exception of those at Pj; there they are only  
 

⇥i (Pj) = �i j

�i � C� C0

�i
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Implementation  

§  Practical calculation of                  : 
 
 
 
 
 
 
Thus: 

§  If                               , then X is located on an edge 
→  special treatment: 

1.  X = Pi    or    X = Pi+1  

2.  Otherwise: use linear interpolation between Pi und Pi+1  

X 

Pi+1 

Pi 

pi+1 

pi 

tan
��i

2

⇥

cos �i =
pi ·pi+1

|pi |·|pi+1| sin �i =
|pi � pi+1|
|pi |·|pi+1|

|pi � pi+1| = 0

�i
tan

↵i

2

=

sin↵i

1 + cos↵i

tan
↵i

2
=

|pi ⇥ pi+1|
|pi |·|pi+1|+ pi ·pi+1
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Application: Interpolation of Colors 

§  Given: 
§  A simple polygon (not necessarily convex) 

§  A color at every corner 

§  Task: color the interior of the polygon with "pretty" color 
gradients (a common task in drawing software, for example) 

§  Solution: 
§  Calculate barycentric coordintates for every pixel in the interior of the 

given polygon 
§  Interpolate the colors of the vertices using these barycentric coords 

Wachspress Mean Value Coordinates 
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Application: Image Warping 

§  Task: warp the given image by displacing a few "control polygon" 

§  Examples: 
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Algorithm 

§  First idea: "forward mapping" 

§  Construction of f : 

§  Determine barycentric coordinates 
of a point X w.r.t. the control 
polygon in the source image 

§  Interpolate the positions of the 
vertices of the control polygon in 
the destination image ⟶ X' 

§  Problems: 

for u = 0 .. umax: 
  for v = 0 .. vmax 
    x, y = f(u,v) 
    dst(x,y) ← src(u,v) 
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§  Better idea: "reverse mapping" 

§  Use barycentric interpolation again 
to construct f-1 

§  Just swap the roles 

§  Small problem: 

§  (u,v) are not pixel coords.; rather                                                          
they are located "between" pixels 

§ One has to do "resampling" or 
interpolation in the source image 

for x = 0 .. xmax: 
  for y = 0 .. ymax 
    u, v = f-1(x,y) 
    dst(x,y) ← src(u,v) 



G. Zachmann 40 Generalized Barycentric Coordinates Advanced Computer Graphics 4 July 2013 SS 

Resampling 

§  Simplest solution: rounding 
§  Produces big artifacts ("aliasing"; more on this later) 

§  The second-simplest solution: bi-linear interpolation 

§  Better yet: Gaussian convolution 

§  Examples: 

for x = 0 .. xmax: 
  for y = 0 .. ymax 
    u, v = f-1(x,y) 
    a = lin.interp. between src(u1,v2) and src(u2,v2) 
    b = lin.interp. between src(u1,v1) and src(u2,v1) 
    c = lin.interp. between a and b 
    dest(x,y) ← c 

Rounding             to nearest Bilinear Original 
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§  Additional examples: 

§  Today fully-integrated in software: 
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Application: Morphing  

§  Given: two triangle meshes M1 und M2 with... 

§  Exactly the same number of vertices und triangles; and 

§  A correspondence                              so that 

§  Task: a uniform "deformaton" of mesh M1 in M2  

§  Because of the correspondence, it is sufficient to manipulate the 
coordinates of the vertices from V1 uniformly (for example, across 1000 
time steps), so that in the end V2 is generated 

§  Terminology: M1 and M2  
are also called "morph targets," 
or "source" and "target" 

� : V1 � V2

P,Q,R ist ein Dreieck in M1 �
�(P),�(Q),�(R) ist ein Dreieck in M2
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§  Given t, the "morph parameter“ 

§  Naive solution: linear interpolation 

§  Example: 

P(t) = (1� t)P + t�(P)
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§  Assumption: both meshs M1 and M2 are flat in the plane 

§  Enclose both morph targets in a common, fixed polyline: 

With none or few additional points Many additional (Steiner) points 
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§  Terms: 

§  Inner vertices 

§  Bounary points 

§    

§  E = set of edges 

§  Using generalized barycentric coordinates, set up an LES for all 
vertices (for both M1 and M2): 

§  For every 
 

define 
 

and set 

VI = {Pi | i = 1 . . . n}
VB = {Pi | i = n + 1 . . . n + k}

N = n + k

Pi � VI , i = 1 . . . n

�i j > 0 ⇥(i , j) � E

�i j = 0 ⇤(i , j) ⇥� E
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§  Therefore: 

§  Written slightly differently: 

§                               yields the 3 LES's:  

-  Analogue for y and z coordinates 

�

⇧⇤
1 ��12 · · · ��1n

��21 1 · · ·
...

...
...

...

⇥

⌃⌅

 �⌥ ⌦
A

�

⇧⇤
x1

x2
...

⇥

⌃⌅

 �⌥ ⌦
x

=

�

⇧⇧⇤

�1,n+1xn+1 + · · · + �1,n+kxn+k
...
...

⇥

⌃⌃⌅

 �⌥ ⌦
b

Pi = (xi , yi , zi )

Pi =
NX

j=1

�i jPj , i = 1 . . . n

Pi �
nX

j=1

�i jPj =
n+kX

j=n+1

�i jPj , i = 1 . . . n
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§  The (simple) idea:  

1.  Interpolate the λ's: 

2.  Solve the 3 LES's for every t → yields Pi, i = 1 ... n 

§  A less simple idea ("intrinsic morphing"): 

1.  Interpolate the α's and r's (= angle & distances in the mesh): 

2.  From that, calculate λ(t)'s 

3.  Solve the 3 LES's 

§  Exercise: how many variables are interpolated in the three 

variants (for a specific t)? 

�(t)
i j = (1� t)�(1)

i j + t�(2)
i j

�(t)
i j = (1� t)�(1)

i j + t�(2)
i j r (t)

i j = (1� t)r (1)
i j + tr (2)

i j
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Towards Implementation 

§  Note: 

§  The matrix A is not necessarily symmetrical 

§  It is sparsely populated 

§  It is, to a large degree, diagonally dominated, but it is not a band matrix 

§  Use an iterative solver 

§  Initialize it with the solution of step t-1 
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Results 

§  Linear interpolation of vertices: 

§  Linear interpolation of barycentric coordinates: 

§  Intrinsic interpolation: 
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§  Additional example: 
linear 

barycentric 
intrinsic 
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Going Further 

§  Simultaneous morphing of multiple targets 

§  Given n morph targets Mi 

§  Task: determine an "in-between" 

§  Idea: 

1.  Determine the barycentric coordinates          of 
all Mk with regard to a fixed control polygon 
(or control polyhedron in 3D) 

2.  Interpolate the λ's: 

3.  Solve the LES's 

M1 

M2 M3 

M' 

α1 

α3 α2 

⇥�
i j =

�
�k⇥

(k)
i j

�(k)
i j

M 0 =
P

↵kMk
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Application: Cage-Based Shape Deformation 

§  Given: a mesh 

§  Task: targeted deformation of individual parts of the surface 

§  Example: 

§  The "cages" (a.k.a. "control mesh") determines the deformation (and 
is set, for example, by the animator) 

§  Solution: … 
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Literature 

§  Take a look at papers on the class‘s homepage! 

§  Under "Online-Literatur" 
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